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Wavelet-Based Separating Kernels for Array
Processing of Cellular DS/CDMA Signals

in Fast Fading
Massimiliano (Max) Martone, Member, IEEE

Abstract—We propose new detectors for direct-sequence
code-division multiple-access (CDMA) signals that outperform
known approaches in rapidly fading multipath channels. Multi-
path compensation in CDMA systems is a problem of significant
complexity especially when rapidly fading is afflicting the radio
frequency channel. In this work, we depart from typical ap-
proaches in search of new kernels that can more accurately
characterize the time-varying nature of the estimation problem
and focus on a multiresolution representation of the fading
processes. The unknown channel time variations are in fact
decomposed using optimal unconditional bases in the family
of the orthonormal wavelets. We show that it is possible to
represent the channel in a reduced-order dimensional space
by matching the scattering function of the multipath channel
to its decomposition and obtain an approach that is effective
in fast fading environments, such as those practically found in
macrocell wireless communication applications. We apply this
representation to the development of a practical multiscale filter
that achieves multiuser separation minimizing a time-averaged
squared error. The technique is studied by means of computer
simulations and hardware experiments that employ a currently
deployed base-station system.

Index Terms—Array signal processing, code-division multiple-
access, interference suppression, land mobile radio cellular sys-
tems.

I. INTRODUCTION

T HE performance of code-division multiple-access
(CDMA) systems is severly degraded by frequency-se-

lective multipath radio frequency (RF) propagation. The
mitigation of this effect based on the use of multiuser/multi-
antenna detectors has attracted significant interest in recent
years. The crucial point of almost all of the proposed methods
is based on the assumption that the multipath channels are
quasi-static, that is, time invariant over the length of the
transmitted frame. Slow variations of the channels are then
compensated by using adaptive algorithms that ultimately force
the estimate to be constantly in search of a convergence point. If
the channel coefficients variations in time are fast with respect
to the convergence time of the adaptive algorithm, significant
degradation may result. A more reasonable alternative is to
model the time-varying components of the impulse response
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of the multipath channel as low-pass Gaussian processes with
their correlation representing ensemble average character-
istics. These average characteristics are in turn used to fit
parametric models so that a bank of Kalman filters can be
used for tracking. This approach is impractical because the
parametric models that best fits the channel dynamics have
a large number of free parameters [2], [23]. Moreover, the
generalization of this approach to a multiuser environment
where possibly multiple different channel responses have to
be estimated/tracked is definitely a formidable task in terms
of computational effort. In this work, we depart from these
well-known and obvious approaches in search of new methods
that more “economically” can characterize the time-varying
nature of the detection/estimation problem, and we focus on
a multiresolution representation of the fading process in each
component of the channel response, elaborating some ideas
of [26], [31], [6], [11] (and in a sense [9]) as they apply to
the direct-sequence CDMA (DS/CDMA) detection problem.
The unknown channel time variations are in fact decomposed
using optimal unconditional bases [7] such as orthonormal
wavelet bases [4], [5]. The use of basis expansion models in the
representation of time-varying multipath channels is discussed
in [9], but was used in earlier works on multipath modeling
[3]. It is extremely important to realize that modeling of linear
systems by basis functions can turn a time-varying system
identification problem into a time-invariant one. Essentially
inspired by Fourier harmonic analysis ideas, simple exponential
bases were used in [9]. The exponential basis function of a
Fourier-like decomposition has infinite duration, so clearly
any representation of a time-localized signal is not efficient
and adequate. To connect this consideration with a simple
and intuitive example, consider a signal made of two pure
oscillations occurring at nonoverlapping distinct time intervals.
The Fourier transform (FT) reveals the presence of the two
tones, but with no localization in time, which forces a wrong
representation for the signal. In other words, representations
based on exponentials lack “parsimony.” The time-varying
reflections of electromagnetic waves caused by a moving
transmitter (or receiver) are in nature very similar to a signal
where multiple propagation modes are present at different
times. To represent the frequency behavior of a signal locally
in time, the signal should be analyzed by functions which are
localized both in time and frequency, for instance, signals that
are compactly supported in the time and frequency domains.
In reality, no function can be compactly supported simulta-
neously in time and frequency, so the scientific community
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has directed intense research efforts in the development of
functions with “good” time-frequency localization: wavelets
are the best known tool for linear time-frequency analysis.
Another example of multipath modeling using harmonic
decompositions is also contained in [10], where the problem
of needing a large number of exponentials for a reasonable
accuracy was also emphasized. Many more considerations
regarding the disadvantages of Fourier analysis in practical
problems can be found in [8] and [7]. An obvious solution
to the time-localization problem of the Fourier analysis is to
localize the tones in the Fourier representation by windowing
several time-consecutive intervals of the analyzed signal. This
is, in fact, the short-time FT which basically operates a partition
(or “tiling”) of the time-frequency plane in rectangles of equal
area. Wavelets can offer a different and valuable compromise:
the frequency localization is logarithmic in frequency. Looking
at the time-frequency plane, this means that time localization
gets finer at the highest frequencies. The wavelet transform
replaces the FT’s sinusoidal waves by a family of functions
generated by translations and dilations of a single window
called a wavelet. Complicated signals can be represented
using only a few wavelet and scaling functions, and statistical
signal modeling and processing methods based on the wavelet
transform are in most cases much more effective than classical
time-domain or frequency-domain approaches.

A. Significance of Modeling Time-Varying Systems Using
Wavelets

In this section, we give a brief explanation of the ideas con-
tained in this paper by using an oversimplified continuous-time
single-user model. Consider a sequence of symbols collected in
the vector , digitally modulated to form the signal . The
signal is input to , the time-varying impulse re-
sponse of a multipath channel, as

(1)

Assume that the kernel can be represented by an expan-
sion of the form

(2)

where is a set of functions (wavelets) and
are the (wavelet) coefficients of the expansion.

Using this representation, we can express (1) as

(3)

where . This representa-
tion can be economical if the set contains a small
number of functions. The multiplication empha-
sizes the time selection of the input content and its frequency
translations. Observe that for any in the set is the
output of a time-invariant linear filtering operation: it is simply

obtained filtering by . Another interesting prop-
erty of this representation is that it gives us the ability to select
for any given time interval only those wavelet coefficients re-
sponses that affect the output during the time interval of
interest. Assume now that white Gaussian noise afflicts the
channel output as . The maximization of the
likelihood function with respect to the transmitted sequence of
symbols is easily seen to be equivalent to the maximization of
the function [28]

(4)

where is the time interval over which we observe
and . The wavelet-based
representation gives the possibility of an economical, but
still accurate, formulation of the optimal detector based on
the maximization of (4). In fact, it is possible to select
a subset of the functions and coefficients in such that

is well represented only over the
time interval . This is quite valuable and somehow impossible
using known nontime localized models. We have already
presented an application of this maximum-likelihood (ML)
time-localized approach to ML sequence estimation detection
of narrow-band digital signals in [15]. Unfortunately, we will
find that the application of this idea to a multiuser system
is very demanding in terms of computational complexity, so
we will turn our attention to a simplified linear detector, one
that is based on the design that is expanded onto the
same wavelet basis used in the channel model and whose
coefficients minimize an averaged squared error

(5)

where . Again, the wavelet-
based representation gives the possibility of an economical,
but still accurate, design of a time-varying filter by means of
a selection of a subset of functions and coefficients insuch
that is well represented over the time
interval .

The use of wavelet bases allows the selection of the subset
in (or ), which will model thelocal andglobal charac-
teristics of the channel dynamics. A clear attempt of the en-
gineering community to have a global characterization of the
time-varying nature of a multipath propagation link is the well-
known wide-sense stationary uncorrelated scattering (WSSUS)
model [21]. The WSSUS assumption is only an approximation
of the real propagation mechanism in a dense multipath envi-
ronment. Indeed, has smooth (low frequency) variations
with occasional rapid changes that cannot be possibly modeled
as stationary. In particular, a channel model which is uniquely
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based on ensemble average characteristics will inevitably loose
local characteristics that are caused, for example, by rapid tran-
sitions and sudden changes of the impulse response dynamics
(for example, the mobile transmitter coming to a sudden stop),
while the multiresolution model will retain such information
in a few high-resolutiondetail coefficients. The idea that the
wavelet-based representations can better model not only non-
stationary but also stationary processes is also the motivation
for [31] and [6]. We will however use the WSSUS model to
tune our channel representation and to eliminate gross redun-
dancy; in other words, second-order statistics will provide gen-
eral guidelines on how to select the low-resolution coefficients.
It is however understood that retaining only the low-resolution
coefficients will not give us the kind of “parsimony” that we ex-
pect from a wavelet-based representation. To achieve this goal,
a few high-resolution coefficients empirically selected will be
maintained.

The paper is organized as follows. In Section II, we give a
brief introduction to wavelet-based signal processing methods.
In Section III, we review the CDMA system model, and in Sec-
tion IV, we study the channel basis expansion. In Section V, we
motivate a reasonable reduced dimensional representation of the
fading channel. In Section VI, we present possible approaches to
detection with a practical time-variant filter, also implemented
as an adaptive filter. In Section VII, the results of simulations
and hardware experiments are shown.

II. DISCRETEWAVELET TRANSFORMATIONS

A generic signal can be represented in terms of translates
and dilates of a single prototype (typically bandpass) wavelet

(6)

or equivalently for some

(7)

where

are wavelet (ordetail) coefficients

are scaling (orapproximation) coefficients, and is a
low-pass scaling function [4], [5]. Particularly important is
the interpretation of (7) as a multiresolution analysis of :

indexes thescale, or resolution(the smaller the higher the
resolution), while indexes thespatial location of analysis.
If the mother wavelet is centered at time 0 and frequency,

measures the content of around time and

frequency , while represents the local mean around
time . In this framework, we can think of as the finest
scale representation of itself. The function
has to satisfy some critical conditions to ensure that (7) holds
for any square integrable function . In particular, has
to satisfy the two scale equations

(8)

(9)

where the coefficients can be nonzero1 only over a fi-
nite number of consecutive values of. Define

and .
The three orthogonalities constraints imposed areO1:

, O2:
, andO3:

. It is possible to show thatO1, O2, O3 are sat-
isfied by coefficients that have the following properties:

A remarkable observation can be made: are the coeffi-
cients of a perfect reconstruction two-band (or dyadic) filter
bank with the quadrature mirror reconstruction property [27].
Therefore, the design of wavelets is equivalent to the design
of filter banks. Observe that the conditions imposed up until
now are not sufficient to construct in practice useful wavelets. In
fact, they can lead to decompositions with not enough regularity.
Regularity is imposed requiring a large number of vanishing
moments [4], [5]. In practice, and can be com-
putedrecursively from using the efficient pyramid
algorithm proposed by Mallat in [14]. It is not necessary to ex-
plicitly compute the shape of and . The basic appli-
cation of wavelets in this paper stems from a multiresolution
decomposition [which simply specializes the expansion in (2)]
of a time-varying multipath response of the form at any

with respect to as

(10)

where are wavelet coefficients and are
scaling coefficients. If the channel is modeled as deterministic,
wavelet and scaling coefficients are considered determin-
istic,and if the channel is modeled as random, wavelet and
scaling coefficients are considered random parameters. The
wavelet-based representation will exhibitglobalcharacteristics
of the channel dynamics in the low-resolution coefficients,

1By doing so, we restrict our description to compactly supported wavelets
[27].
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Fig. 1. System model in the uplink of a cellular system.

while retaininglocal rapid transitions in just a few coefficients
at higher resolutions. A practical advantage is that the decom-
position decouples the variations in time and relegates them in

and , so that the wavelets coefficients are indeed time
invariant for any . Moreover, since we will assume discretized
responses with resolvable multipath components of the form

, we will significantly simplify
(10).

III. SYSTEM MODEL

In this section, we briefly review the system model for the
reverse link of a CDMA cellular system. No particular assump-
tion is made on the geometry of the array at the base station,
and we intentionally neglect the propagation assumptions of
the model. More details regarding these assumptions can be
found in [16], [18], and [17]. In a DS/CDMA communication
system [13], the information signal relative to theth user is
given by

(11)

where

if
otherwise

and is the real or complex message (to include
any type of digital modulation scheme) composed of-ary
symbols of duration . The usersasynchronouslyshare the
common channel using the signatures waveforms

(12)

where is the chip period and
is the pseudonoise (PN) spreading sequence of length. The
spreading signal waveform (12) of theth user has duration

and is normalized to unit power. If an equivalent low-pass
representation is employed, theth transmitted spread-spectrum
signal can be written as

. This signal is distorted by multipath RF propagation and
multiple-access interference caused by other users. Each mobile

transmitter has a single antenna (see Fig. 1), while at the base
station, the multiplexed signal is received through an-sensor
antenna. The received signal at the base-station receiver can be
represented2 as

(13)

where ( denotes convo-
lution) is the combined impulse response of each signal path
of the th spreading waveform and the channel from theth
user to the th sensor, and and are the received signal
power and the carrier phase of theth transmitted signal rela-
tive to the th user, respectively. The channel between
the th transmitter and theth sensor for and

is

(14)

are the normalized fading complex envelope processes
so that reflects the th user received energy over the
time period corresponding to and is the delta func-
tion. The noise in (13) is white Gaussian, with two-sided power
spectral density ; it can also represent the surrounding cell
interference, plus noise. Multipath channels enhance interfer-
ence among users, introducing intersymbol interference and ad-
ditional correlation between the spreading waveforms. Received
energies are assumed invariant over the duration of the message:

for . We assume that the receiver
has perfect knowledge of the powers, time delays, and phase
lags of every received user signal. At the receiver, a bank of
filters for each sensor (see Figs. 2 and 3), each filter matched to

2Equation (13) with (12) assumes the code remains the same from bit to bit
for a particular user. However, IS-95 and many other CDMA systems use dif-
ferent parts of a longer code for each bit. Besides substitutinga (�), where
now the code utilized by thekth user depends on the bit index(i), the rest of
the signal model is still valid for systems using long codes (defined aperiodic
systems in [29]). For simplicity of exposition, we limit our model description
to periodic systems. Since the same multichannel model (16) can be derived for
the aperiodic (long codes) case, the presentation of the algorithms that follow
also apply to practical CDMA systems like third-generation (3G)-CDMA and
IS-95.
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Fig. 2. Architecture of the receiver.

a delayed replica of the wanted spread-spectrum signature, per-
forms despreading with the signatures in (12) and is sampled at
symbol rate to obtain the set of samples

(15)

The input/output relation for the multichannel discrete-time
system can be written as

(16)

where

(17)

and is the noise component.

IV. WAVELET-BASED CHANNEL BASIS EXPANSION

We would like to obtain a practical basis representation for
the discrete-time channel that is easily parame-
trized, it retains the essential features of the fading process and
it characterizes these features using a small number of time-in-
variant coefficients. These requirements can be satisfied using a
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Fig. 3. Signal processing subsection relative to antenna�.

discrete-timewavelet series representation. An important tech-
nical aspect arises. We do not need the coefficients of the con-
tinuous-time wavelet series expansion of

(18)

to obtain a representation of the form in (10). We only need a dis-
crete-time wavelet series representation of a sampled version of

, that is .
It is possible to show that for a high resolution (that is large

) and short , the discrete-time series coefficients and con-
tinuous-time series coefficients asymptotically converge to the
same values. The orthonormal expansion we will derive can
be thought more properly as a multiscale subband decomposi-
tion using filterbanks of the sampled response of a multipath
channel. We direct the interested reader to [27] and in particular
to [22], where a “discrete-time” approach to multiresolution rep-
resentations is described.

To simplify notation, consider as the generic re-
sponse for a generic set of indices . It is fundamental
to observe that can be represented at lower resolution

applying a half-band low-pass filter having impulse response
, followed by a downsampling-by-two operation

(19)

This equation represents a mapping from a vector space to itself.
An added “detail” can be obtained by using a high-pass filter
with impulse response , then again downsampling by two

(20)

The filters satisfy some regularity constraints [4],
[5] and form an orthonormal set. If in the -domain

is a dyadic perfect reconstruction filter bank [27], one
can think of (19) and (20) as adecompositionof onto
a discrete-time orthonormal basis with the following (perfect)
reconstruction rule:

(21)

which is indeed a sum of orthogonal projections. Using the
same filters , (19) could be split again in low-pass
and high-pass downsampled components, and then the low-pass
component could be further split again to a desired “depth” or
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resolution, so that one can always “explode” the low-pass com-
ponent resolution

For example, consider (22) for and subtitute in (21) to get

(23)

where , , and are filters obtained in the
-domain as

. In the last equation, we have used
the Noble identity [27] which says that a downsampler by
two, followed by a filter , is equivalent to the filter
followed by the downsampler by two. We can think of (23) as
a decomposition of onto a discrete-time orthonormal
basis at resolution level . The method can be applied
recursively to obtain at generic resolution deptha filter bank
with branches

(24)

where and are coefficients of the wavelet-based
decomposition (WBD), and the filters and (with
real coefficients) are given in the-domain by

(25)

The expression (24) with (25) can be easily obtained making
use of the Noble identities [27]. This approach essentially
uses a binary subband tree structure that is constructed using

stages of two-channel filterbanks [27]. Specializing (24) to
, we have

(26)

where and are discrete wavelet
transform (DWT) coefficients. Using vector notation, it is pos-
sible to express (26) simply as

(27)

where the organization of the wavelet coefficients in
is

with3

and

Evidently,
where for . Fig. 4 shows
a multiresolution analysis of a fading coefficient
for a time-varying multipath event (500 samples, 41.2-sec
sampling period, 100 km/h). The representation of the channel
is shown at increasing resolutions. Observe that (26) is valid
with equality because of the perfect reconstruction property of
the dyadic filter bank. We will determine which components
of the expansion (26) can be neglected (i.e., zeroed) without
compromising the parsimony of the representation.

V. VALIDATION OF THE DWT CHANNEL

Statistical characteristics of the fading channel are typically
available from experimental measurements in the form of the
scattering function [21]. Assuming the channel to be WSSUS4

[1], we can tune our channel representation: in other words,
second-order statistics will provide general guidelines on how
to select the low-resolution coefficients. Low-resolution coeffi-
cients are important for a global characterization of the fading
process. It is however important to point out that retaining only
the low-resolution coefficients will not give us the kind of “par-
simony” that we expect from a wavelet-based representation. To
achieve this goal, a few high-resolution coefficients (in addition
to the coefficients necessary for a global representation of the
process) empirically selected will have to be maintained.

3The notation[v] is used for thekth element of vectorv.
4The WSSUS assumption impliesEfh (t ; � )h (t ; � )g =

S (� ; t � t )�(� � � ), and the expectation is over the channel
ensemble. The scattering function of the multipath channel is related to
S (�; t) by the FT, first with respect to� , and then with respect tot.



986 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 6, JUNE 2000

Fig. 4. The (time-varying) filter relative to theith user.

Having assumed the model (14), the knowledge of the
second-order statistics of the channel variations is obtained
from the knowledge of

which is then mapped to the knowledge of the discrete-time au-
tocorrelation function of the channel

with .5 Using (26), we have

(28)

Observe that due to the orthonormality of the DWT, defining
as the vector with th element

5In fact,R (l; k ; k ; i; �; i ; � ) can be computed from the knowledge of
S (� ; t � t ) and the spreading codes of each user.

we also have

which is a matrix constructed from .
We can validate our model (26) using (28). In other words, we
can determine which components of the expansion (26) can be
neglected (i.e., zeroed) without compromising the parsimony
of the wavelet-based representation. Define as
the vector obtained zeroing the last elements of

and as the vector obtained zeroing the last
elements of . A possible indication of

the parsimony in the representation (26) retaining only
DWT coefficients, is

where
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Fig. 5. Multiresolution wavelet-based representation of a fading event (real part of the coefficient for a 500 symbol-spaced samples snapshot) for atime-varying
multipath channel representing a mobile transmitter traveling at 100 km/h. The maximum resolution depth isP = 5 and the mother wavelet used is generated
from a Daubechies filter of order 6.

and . Once a partic-
ular has been selected, we can write

(29)

where6

with . Fig. 5
shows a multiresolution wavelet-based decomposition for a
100-km/h fading channel. Fig. 6 shows experiments for the
time-varying multipath DWT decomposition of a 500-samples
(symbol spaced) snapshot. From top to bottom of the figure:
the magnitude of a generic Rayleigh fading tap, DWT
for the real part of the tap variations, dynamics of the real part
and reconstructed dynamics using 16 wavelet coefficients. In
Fig. 7, we show the approximation error for different resolution
depths and for different values of for . The
approximation error (shown in decibels in Fig. 3) is defined as

where and contain, for any indicated , only
components.

6The notationI identifies theA � A identity matrix, while the notation
I identifies theA�(A+B)matrix whose firstA columns are the columns
of I and the lastB columns have elements equal to zero.

A. Interpretations

The method we have outlined can be interpreted as a subspace
selection procedure [24]. In fact, the DWT of the-long vector

representing the dynamics of the channel at lagcan be
expressed as

(30)

where is an orthonormal linear transformation ex-
pressing the operation of the wavelet transform. Consider

, the matrix formed by the first
columns of corresponding to theshrinkage(that

is the zeroing) that yelds tolerably small values of the metric
. Applying the trasformation

(31)

we essentially define a “subspace parameter” . The
orthonormal columns of span an -dimensional subspace
defined such that (the space of any com-
plex vector of length ). Observe that when the transforma-
tion is selected with , any estimate (or representa-
tion) of is insensitive to disturbance components of
for , and the resulting estimator
(or representation) has a smaller variance than the full space
estimator. Also, any traditional adaptive scheme for equaliza-
tion (or channel tracking) designed to follow the variations of

attempts a full-space estimation of the channel.
In other words, traditional schemes will generate point-by-point
estimates spanning . The proposed channel representation
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Fig. 6. An example of time-varying multipath DWT decomposition for a 500-sample (symbol spaced) snapshot. From top to bottom: the magnitude of a generic
Rayleigh fading tap, DWT(P = 5) for the real part of the tap variations, dynamics of the real part and reconstructed dynamics using only 16 wavelet coefficients.

method when incorporated in practical detectors will achieve a
decreased variance of the channel estimate error. It is however
important to emphasize that this advantage is obtained at the ex-
pense of estimation bias, because in practice

(32)

with holds only approximately true, and while
the variance increases with the dimensions of the subspace (that
is ), the bias decreases [24]. Evidently, the goal of selecting
a transformation is to optimize the tradeoff between bias,
variance, and computational load.

VI. DETECTORS

Once we have achieved a parsimonious representation of the
form (29), we can write (16) as

(33)
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Fig. 7. Mean squared error (MSE) (average over 100 experiments) of the
multiresolution wavelet-based representation of a fading process (real part
of the coefficient for aN = 512 symbol-spaced samples snapshot) for a
time-varying multipath channel representing a mobile transmitter traveling at
100 km/h. The maximum resolution depth isP , and the mother wavelet used
is generated from a Daubechies filter of order 6. The MSE is plotted versus
M whereN=2M is the number of wavelet coefficients maintained in the
representation of the 512-point sample evolution.

where , and the organization of the
filterbank coefficients into and the wavelet coeffi-
cients into is evident from the context. We can compact
in matrix notation (33) organizing the samples for

in a vector to obtain the familiar model

(34)

where is a vector that contains the wavelets coefficients and
depends uniquely on the transmitted symbols

and the coefficients of the filterbank
(ultimately the selected orthonormal basis). Using a generalized
likelihood [28] argument, we can obtain the (blind) ML rule [15]

(35)

(36)

where is the hypothesized sequence, , and

is the novel separating kernel with . The gener-
alized ML rule in (36) presents significant complexity, if quite
attractive conceptually. Indeed, it is rarely practical. A more
feasible approach is to design a time-variant minimum average
squared-error filter that attempts restoration of the desired user.

A. Time-Variant Filter

A possible solution to detection is to implement a time-variant
minimum average square-error (MASE) filter for theth user
indicated at time as

as indicated in
Fig. 4. Denote as the output of the filter for the detection
of the th symbol of the th user

(37)

The filter coefficients can be obtained from the minimization of
the averaged squared error

(38)

where we have used the notation for
an -sample time average. The orthogonality principle dictates
that

(39)

for
.

Since we have established that a reasonably accurate repre-
sentation of the fading channel variations is given by (29), it is
also intuitively clear that the optimum time-variant filter can be
expressed as

A more detailed explanation of this last statement is in the Ap-
pendix. Renaming more conveniently the components of
and as

we can use the following expression:

and obtain



990 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 6, JUNE 2000

If we denote , the orthogonality
principle can be expressed as

(40)

for
. It is easily shown that the solution

to this estimation problem is

(41)

where

(42)

(43)

with

(44)

Typical approaches to achieve real-time implementation are gra-
dient-based methods and recursive least squares (RLS)-based
methods. The well-known recursion in both cases is

(45)

where

if the algorithm of choice is the least mean square
(LMS) and is a step-size parameter that controls the
rate of adjustment. Using an RLS approach, we have

where

and . is a forgetting
factor that can be set approximately equal to one because, in
reality, the wavelet coefficients are time-invariant and need
only to be identified, not tracked.

Remark 1: It is important to observe that the true vector of
wavelet coefficients is time invariant, so the task of the adap-
tive algorithm in the proposed approach is to converge to the
channel parameters as opposed totrack them. This makes the
LMS algorithm perfectly adequate for the task. If the WBD re-
tains wavelet coefficients, then the complexity of the

proposed approach is for an long filter,
users, and antennas. In the traditional minimum MSE

(MMSE) approach, one is forced to use an RLS approach be-
cause tracking directly the taps of the filter using a gradient
approach is ineffective in fast fading. Evidently, one ends up
with a complexity , which in most cases is much
higher than the complexity presented by the WBD multiscale
filter approach for the same length of the filter, number of
antennas, and number of users. This advantage in fast fading
environments is extremely valuable and in fact results in sig-
nificant performance advantages.

Remark 2: One of the reviewers (reviewer B) suggested an
interesting interpretation of the expression in (41). There is an
apparent similarity between (41) and the MMSE linear mul-
tiuser detector of [13]. In particular, the two detectors converge
asymptotically to the same detector in the case of time-invariant
channels. It is then appropriate to state that the detector de-
scribed by (41) in a rapidly varying environment is a practical
approximation of the instantaneous exact Wiener solution. The
instantaneous Wiener filter cannot be implemented in a time-
varying environment using average sample-statistics estimators
because the processes involved are nonstationary. This is ex-
actly the reason why the detector (41) outperforms the tradi-
tional multiuser MMSE detector (see Section VII), which uses
sample-statistics averages for the estimation of second-order
statistics.

VII. PERFOMANCEANALYSIS

Since an analytical approach to the performance of the out-
lined detector is beyond the scope and the length of this paper,
we present the results of a simulation analysis. Consider a mo-
bile radio system when the uplink applies DS/CDMA with a
gross bit rate equal to 48.5 kbit/s. The users’ codes are known at
the receiver as the base station has allocated one code for each
user. We use Gold codes of 15 chips, 7 equipower users, and

(two-path Rayleigh fading channel) in each channel
impulse response between each user and each antenna array
element. The antenna is a three-element uniform linear array
with of a wavelength spacing (this spacing guarantees un-
correlated scattering at the different antennas). The impulse re-
sponses of the multipath channels are generated so that the de-
lays are constrained to be an integer number of chip periods ac-
cording to Table I. Users modulate data using quadrature phase-
shift keying (QPSK). A synchronization unit is assumed to esti-
mate the delays exactly. We assume the first user to be the refer-
ence user. Signal-to-noise ratio (SNR) in the figures is equal to

. A training sequence of 14 symbols is transmitted every
256 symbols, to train the time-variant filter.

The slots are generated of dyadic length and are
Daubechies filters of order 3. We assume [12] that

for and
elesewhere

where is the Bessel function of order zero, is Doppler
spread that depends on the velocity of the mobile transmitter,

is the variance of the fading process. The Doppler frequency



MARTONE: WAVELET-BASED SEPARATING KERNELS FOR ARRAY PROCESSING OF CELLULAR DS/CDMA SIGNALS 991

TABLE I
CHANNEL PROPAGATION ENVIRONMENTS FOR PERFORMANCE

EVALUATION RESULTS: DELAY SPREADS OF THEMOBILES

describes the second-order statistics of channel variations.
Doppler frequency is related through wavelengthto the
th mobile transmitter velocity expressed in km/h. The

complex weights are generated as filtered Gaussian processes
fully specified by the scattering function. Particularly, each
process has a frequency response equal to the square root of the
Doppler power density spectrum.7 It is then straightforward to
verify (using the described validation method) that for speeds
of the mobile up to 300 km/h and or , it is
possible to retain only or wavelet
coefficients in without significant penalty in
the matching metric . In other words, the excellent
“compacting” properties (see [7]) of the wavelet transform are
able to compress most of the energy of the time variations of
the channel in the low-resolution representation of the fading
process, and this makes the approach very attractive in practice.
The output of the filter at time stepis , where
the vector is obtained from

as in (45).8 The vector is computed from
the baseband samples and the coefficients of the Daubechies
filters and at each antenna as detailed in (44). A
decision for the th symbol for the th user is obtained from
a QPSK slicer whose input is the scalar .
Bit-error rate (BER) analysis results are shown in Figs. 8 and 9.
We compare with the multiuser MMSE detector updated using
the QR-RLS (QR-based recursive least squares) algorithm
(probably the best method in terms of tracking performance).
The MMSE-QR-RLS at every iteration solves the following
minimization problem:

(46)

where and are recursively defined as

7The Doppler spectrum is approximated by rational filtered processes. The
filters are described by their 3-dB bandwidth, which is called the normalized
Doppler frequency. The additional assumption is that all channels and complex
weights have the same Doppler spectrum.

8â (n� 1) is the decision on the complex QPSKnth symbol,kth user. Ev-
idently, the filter runs in decision-directed mode. While in training, the exact
knowledge of the first 14 symbols allow the estimation ofw (n) using (41).

with

The solution obtained by applying a recursive QR decompo-
sition to the data matrix defines the QR-RLS [19] al-
gorithm, which attempts convergence to the MMSE solution
for . We use in the DWT representation of the time-variant
filter and retain (for ). The BER
is relative to the first mobile transmitter. Ideal frame and
symbol synchronization is assumed, and the LMS is used to
update the wavelet coefficients. A sample size of was
used to estimate an error probability of . Fig. 8 shows
results for the propagation environment reported in Table I,
which evidently represents a fast fading environment, such
as those practically found in high-mobility cellular systems.

is the length of the filter, is the number
of sensors at the receiving antenna array. It is clear that the
MMSE approach (dashed curves in Fig. 6) is inadequate.
Fig. 9 shows the results of experiments with only the first
three users active simultaneously. The speed of the three mo-
bile transmitters is increased up to 400 km/h, the SNR per
bit is equal to 32 dB. The DWT-based filter is significantly
less sensitive to Doppler spread increases.

A. Hardware Implementation Results

A simpler scenario was studied
using baseband data collected from the DSP receiver section
of , the dual-mode wide-band base station implemented
at Watkins-Johnson Company [16]–[18]. A block diagram of
the receiver section of the base station was shown in [16]. The
wide-band base-station architecture is described in detail in
[30]. Fig. 10 outlines the hardware setup. The dispersive channel
is created using two hardware fading emulators (NoiseCom
MP1600) which model two-ray Rayleigh fading channels.
The signal generator simulates transmission of CDMA frames
from two different mobiles with the frame format described in
the previous section. The DSP modem receives two complex

pairs at the rate of 727.5 kHz after RF conversion and
digital quadrature downconversion. The wordlength used is 24
bits and the algorithm has been implemented using simulated
fixed-point arithmetic. Automatic gain control is operated
on a slot-by-slot basis to exploit full dynamic range of the
digital signal processing unit. While perfect synchronization
was assumed in the previous simulations, in the hardware
experiments, there is an open-loop synchronizer (both PN code
and frame synchronization). We use a resolution depth equal
to and (that is, we keep 8, 16, 32 wavelet
coefficients). The results of extensive BER measurements are
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Fig. 8. BER for seven users, 15-length Gold codes in fast frequency-selective fading channels. For propagation parameters, see Table I. Solid curvesare for the
time-varying separating filter based on the DWT representation. Dashed curves are for the MMSE time-invariant filter based on the traditional adaptive QR-RLS
scheme.

Fig. 9. BER for three users, 15-length Gold codes in fast frequency-selective fading channels with increasing speed of user 1, 2, 3. For propagation parameters, see
Table I (first three users). Solid curves are for the time-variant separating filter based on the DWT representation. Dashed curves are for the MMSE time-invariant
filter based on the traditional adaptive QR-RLS scheme. The 90% confidence intervals for the measured BER are shown.

summarized in Fig. 11. The propagation environment is de-
scribed in Table I, considering only the first two users and first
two antennas. The complexity of the algorithm is for

equivalent to 78 MIPS (millions of instructions
per second), which is well within current processing capability
of most DSP processors today on the market.

VIII. C ONCLUSION

A new multipath fading channel representation based on
wavelets allowed a new formulation of the CDMA detection
problem in frequency-selective rapidly fading channels. The
channel time variations were decomposed using optimal
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Fig. 10. Hardware test setup for lab experiments.

Fig. 11. BER for hardware experiments with one or two users, two antennas, 15-length Gold codes in fast frequency-selective fading channels. The length of the
filter is L = 4. For propagation parameters, see Table I (first two users, first two antennas).

unconditional bases such as orthonormal wavelet bases. The
use of these expansions is well motivated by the excellent
time-frequency localization properties of the wavelet functions.
Particularly, the time-localization allows a “parsimonious”
(that is, economical while still accurate) representation of

the channel dynamics over the time of observation. This
cannot possibly be achieved using traditional time-only or fre-
quency-only processing techniques. Using the new model, we
have formulated the generalized likelihood detection statistics
which, however, present an unmanageable complexity. As a
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practical solution, we focused on a multiscale time-variant
adaptive filter characterized by the same dynamical features ex-
hibited by the channel, and we proved the approach extremely
effective with respect to the traditional MMSE multiuser
receiver. Simulation results and hardware experiments have
been shown to demonstrate that the approach can be more
effective than traditional algorithms in time-varying channels
characterized by large Doppler spread.

APPENDIX

In this appendix, we give a justification to the statement we
made in Section V-A.

If the time variations of the multipath responses are well rep-
resented by an expansion of the form

(47)

where are coefficients of the discrete-time basis
and are coefficients of the expansion,
then it is very reasonable to expect that the time-varying
filter that minimizes the MSE between and

also
can be represented as

where are coefficients of an expansion equivalent
(that is, using the same basis) to the expansion valid for

.
Define

and

so that (16) can be written

(48)

or

(49)

where

Then, we can express (37) as

(50)

where contains the weights properly orga-
nized. We can also write

(51)

The MMSE solution for [20], [25] is well approximated
by

(52)

where , and
where we have used the fact that the scaling factor

changes more slowly than
. The expression in (52) is justified in [20] and is

valid also for decision-feedback filters with some modifica-
tions. The approximation was proved asymptotically valid
by experimental results and in fact used also in [25] to
analyze the performance of multichannel decision-feedback
equalizers.

in our CDMA system model is very close to a di-
agonal matrix in practice if are i.i.d. symbols, the
fading processes are assumed independent
(across antennas and paths), and the PN codes used are
assumed ideally uncorrelated with shifted replicas of them-
selves and different codes. Expression (52) makes evident
that the dynamics of the linear time-varying filter are
asymptotically equivalent (up to scale factors) to the varia-
tions of .
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